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The inhomogeneity of the atmosphere inwhichthe oscillations take place leads to the fact 

that the lower part of the trajectory is traversed by the pendulum faster, and the upper part 

more slowly than in the case when the atmosphere is homogeneous. Figure 3 shows the dependence 
of the oscillation half-periods ?'+ and T_ for the downward and upward deviations, on the 

inhomogeneity parameter 6 (the dashed lines). Using these relations, or simplythedependence 

of the difference AT = T_- T, on 6, which differs little from the direct proportionality and 

depends weakly on oO. we can also determine 6 using the measured value of the difference 

AT. 
In all the motions discussed above, the reaction N of the line becomes equal to zero. 

In general, the oscillations are not planar. 
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THE SOLUTIONS OF THE EQUATIONS OF MOTION OF THE 
KOVALEVSKAYA TOP IN FINITE FORM* 

A.I. DOKSHEVICH 

Elementary transformations of phase variables are used to obtain several 

novel forms of the system of Euler-Poisson (EP) equations with Kovalevskaya 

conditions /l/. It is shown that the use of such equations makes possible 

not only the detection, but also the construction in a finite explicit 

form, of a solution for all four classes of degenerate motions mentioned 

by Appel'rot in /4/, and inadequately studied up to now, without using 

Kovalevskaya quadratures /2, 3/. In particular, an explicit solution is 

given in a novel form for the third class. The new forms of the equations 

of motion are used in a unique manner to study some particular results of 

investigation of degenerate solutions obtained by various methods /5-8/. 

1. The initial equations. Using the Kovalevskaya conditions, we will write the EP 

equations and their algebraic first integrals in the form 

2p' = qr, 2q’ = -rp - coye, r* = coy’ 

y’ = ry’ - qy”, y” = py’ - ry, y”’ = qy - py’ 

2 (p” + q*) f P - 2c,y = 61,, 2 (py + qy’) + ry” = 21 

y’ + y” + y*a = 1, (p’ - 9” + COY’)’ -t(2pq + COY’)* = k’ 

W) 

0.2) 

where a dot denotes the time derivative. Let us introduce the complex variables 

x, = P + e,iq, 5, = (P + e,iqIa + co (Y + e,$‘), n - 1, 2 

i = f-1, sl = 1, e2 = -1 
(1.3) 

and rewrite (1.1) and (1.2) in the form 

28, ix,’ = rx, -I- c,y", 2ir’ = xsa - x1* + E1 - 52 

e,&' = r%,, 2iy"' = %2.x1 - EIXa + x1X2 (X1 - XZ) 
(1.4) 
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(1.5) 9 = 611 - (xl + xzY + 51 + Ez 
cgy” = %I + J?z 6% + 52) - SE1 - r&2 

c,*ym = co2 - k2 - +z22 + x2*& + x1252, E,& = k2 

Eliminating the variables r, y” and using (1.5), we obtain the following equations which 

are important later: 

-4x,*2 = R &,)I+ (xl - ~2)~ L 4x1~; = R (51, 22) 

Here 

R(s)= 5 A,xJ+‘, R (~~1 x2) = A,,r12.x,2 + A,rIx, + 
Y=a 

%A, (x1 + 2s) + A,, A,=- 1, Al=& A,=61i, 

A, = 41c,, A,ZC>_li2 

2. The first formof the equations. Letus transform Eqs.Cl.6). We introduce 

following new variables: 

Yn = - 
(‘” - 0) 

--y@--’ %l= h.z (“n if,4 EE1 (M =(x1 - a)(x2 - a)) 

where a is a constant. After this substitution, Eqs.Cl.6) will take the form 

-4y,*2 = Q b/n) + (Y, - u2hn3 4yl.Y; = Q (~1, y2) 
Q b) - R (4 v4 - R’ (a) ya + l&R” (a) y2 + 4aY - 1 (R’ = 

dR (x)ldx) 

Q ht YZ) = R (4) i/,%22 - ‘l2R’ (a) Y,YZ (Y, + ~2) + 

‘l2R” (~1 Y,YZ - 2 (Yl - Y2 + 22 (y* + Yz) - 1 

WV 

the 

(2.1) 

(2.2) 

We note that QT)~ = EIEg = ka. System (2.2) has the structure of the initial system (1.6). 
Taking this into account, we shall introduce another two variables z, ~a, so that 

2e,iy,’ = zy,+y, (n=1,2) (2.3) 

Substituting these expressions for the derivatives y,' into EqS.(2.2), we arrive at a 

system of three linear algebraic equations for the dual products. Solving this system we 
obtain 

2' = R (a) (Y, + ~2)~ - R' (a) (~1 + y2) - '/zR" (a) + 2a2 + (2.4) 
91 + rl2 

ZYS = 'M' (a) ~1~2 - aa (~1 + yz) + 2a - (rl2~1 + rl1~2) 

~22 = R (4 ~12y2~ + 2aay,y2 - 1 + ~1~22 + '12y,2 

On the other hand, the variables 27 Y.9 can be expressed in an elementary manner in terms 

of the phase variables of the EP equations. Indeed, the derivatives of yl,y2, with respect 

to t defined by Eqs.(2.1) are, by virtue of the equations of motion (1.4), as follows: 

-2e,iY,,z' = (T.z~,~ + c,y") (~2~~ - a)-'; Yl,, = (Yl, Y2)r 

52,l = 6% 52) 

Equating this to (2.3) we find that 

ys = (cay" + er)lM, z = r + Ccl + r2 - 2a) ys (2.5) 

Let us obtain the derivatives Q,'. Differentiating expressions (2.1) with respect to 

%I* and taking into account the EP Eqs.(l.4), we find that 

s,%' = nlnl n= I,2 (2.6) 

Next we find the derivatives of z,y,. Here we find it convenient to use relations (2.4). 

Differentiating them term by term and taking into account the values of the derivatives yn',qn' 

(2.3) and (2.6), we obtain 

~9s' = R (a) (61;" - ~2") - 'l2R' (a) (Y, - ~2) + '11 - 712 (2.7) 

2iy,' = R (a) yly2 (Y2 - Yl) + a2 (Y2 - Yl) + rl2Yl - rllY2 

Let the polynomial R(s) have a real root a. We note that in all degenerate cases /4/ 
determined by the conditions 1) k = 0; 2) 31,&-k = 212;3)‘R(x) has a multiple root, and the 

polynomial R(z) has real roots. Then the variables y,, y,,?b,~)~,z,y, will satisfy the system 



446 

of equations 

ZE,iY,’ = zyn + ys, 2iz’ = -VzR’ (a) (yl - yz) + ql - qz 

Mb = zh 24%3’ = rlzY1 - r)lYZ - a2 (Y, - Yz) 

which has the following first integrals: 

sa = --R' (a) (~1 + Yz) + ~1 + Q + VzR” (a) + 2aa 

ZY3 = I/a’ 64 YlY, - se (Y, + Yz) - (QY, -I- rhy,) + 2a 
?a* = rllYC + %Y,* -I- 2&y, - 1, Q?)z = P 

(2.8) 

Gw 

We note that the EP variables P,q, r, y, y’, y” are rational functions of the new variables. 

Let us assume that R'(a) = 0. Then the set of three equations 

2iz' = q1 - qz, q1' = zrb - iq2’ = zqz 

will form a closed system whose solution can be easily found. Knowing the variables z, 919 % 
as functions of time, we can find /6, 7/ the remaining three variables Y,,y,,y,. Another, more 

complicated method was used in /6, 7/ to obtain system (2.8) in a somewhat different form, 

and thelatter cases used to construct the solution in question in explicit form. The poly- 

nomial R (3) has a multiple root; therefore the solution describes the fourth class of the 

simplest motions (according to Appel'rot's classification /4/). 

3. The second form of the equations. We see that the constant a appears in Eqs. 

(2.8) and in their integrals (2.9). We find that, in general, we can use certain linear 

transformations of the phase variables to obtain equations not containing this constant. 

Indeed, let R (a) = 0, but R’ (a) # 0. We write 

4p, = R’ (4) y, + 2a2, 47, = R’ (a) y3 - 2uaz (3.1) 

After this substitution (2.8) and (2.9) will take the form 

%,P,'i = ZP, + yo, 2iz' = 2 (pz - PJ + n - q2 

W, = zqn. 2b' = wl-- q1p2 

za -i- 4 (PI + Pz) - V1- n2 = Aa, q1rlz = k2 

YOZ + %PI + ~PZ - 2~1~1 = --'la& 

yea = q1Pz2 + rjzp1' + I, 161 = 4A,A, - Aaa 

(3.2) 

(3.3) 

Let us write Eqs.(2.2) in another new form 

-_4p,” = f (Pn) + (Pl - PdP %I* 4P,'P,' = f (Pl, Pz) 

f (P) = --4p3 + Ad - A,p + 1 

f (PI, PZ) = --~P,Pz (~1 + PZ) + Az~l~z - ‘/zA, (~1 + pa) + 1 

(3.4) 

We note that the function f (P) can be transformed by linear substitution of .the 

arguments p = s +‘/zl, into the function S(s) = f(s + ‘/&) = @ - g$- g, where g, = k* - ~,,a + 

312, g, = 1, (k2 - coa - 1,‘) + l’~,~, whichplaysa significant part in the Kovalevskaya analysis. 

Let us write system (3.2) with integrals (3.3) in terms of real variables. Let 

pn = z + e,iy, qn = a + e,iB 
Then 

2x' = zy, 2y' = --z.z - yO, z' = B - 2y 

a' = zfl, p' = -za, yO' = ay - px 

9 + 8x - 2a = A,, 2 (ax + By) + y,z - 2 (x* + y*) = 

-‘lzAr 

%la - 2a (x2 - y2) - 4flxy = I, aa -t $" = kZ 

(3.5) 

(3.6) 

The equations of motion in the form (3.5) may be found useful in the study of the general 
solution, and of various special cases. For example, if k = 0 we have a = 0, b = 0, y0 = const 

and the system (3.5) will be reduced to three equations 

2x' = zy, 2Y' = -zz - yO, z' = -2y 

with the integrals 

a' + 8t = AZ, yfi - 2(2a + yz) = --'lzA, 
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The variable z is found from the equation zea = ZY& + A, - i6-l(AIl-z'). Knowing 2, we 
can easily find '2,~: 8x = AI-zaz 2y= --d. This represents a new form of solution in the 
Delon case. 

4. The third formof the equations .we shalltransformsystem (3.5), assumingthatthenew 
variables Yi, YS, Sr, SC, U, V are connected with the old variables by the following relations: 

9% = unBt u,=u+s& ks,=uz+Vy-r/&U (4.i) 
ks, = -vz -/- uy - ‘&ku, Zky,, = ye + V2e,,z (n = 1, 2) 

The new variables satisfy the system of equations 

with first integrals (ur,uC,I, are constants) 

yla - s19 = ul, yza + szg = u2, ug + us = k 

(u + 2Q - @ + 2szY - 2 (yx i- y# - ir 

a, = ‘l,k-af (Vze,k) = 11sc,8k-a (31, - e,k - 21’) 

I, = ZZk-* = 31, - coak-’ (31, - 21s) 

(4.3) 

Combining the integrals (4,3), we can obtain an integral in the form of the sum of three 
squaxes 

cy;;: Sr + 2U- 2YC)' + I%- $1 - 2u - 2Y8 + 

sz - iy ;= I, 

Is = 21, + 6 (aI f 2~ + k) 

(4.4) 

From (4.3) and (4.4) it follows that all new variables have an upper limit, as well as 
a lower limit. 

A system of equations of motion in the form (4.2) can be used to elucidate the properties 
of the general solution and to construct sufficiently simple particular solutions. Let us 
consider, as an example, the case when the constants vanish. Let u2 = 0. Then 
31, f k - 2P = 0. 

01, 02 
The condition determines Appel'rot's solution /4/ which he calls the 

simplest motion of the second class. The solution can easily be constructed with help of 
Eqs.(4.2). 

Indeed, if as = 0, 
11' = vyl, 

then‘s,= con& =O, ya = const = 0. Therefore, we shall have s,' = -vyl, 
and this implies that Sr + U E b0 E; CC&. Taking into account the fact that Yi* = 

sr' + ulr va = k - us, we rapidly discover that ‘u" = (k - ua)la, + (b. - u)*]. Knowing U(t), we 
can calculate a,y- V by elementary methods and thus complete the solution. We obtain a 
solution of the same type if ur T 0 and we assume that yr -s, = 0. 

5, The third ClaSS of motions. Let a single restriction C1 = 0 hold. The restriction 
determines the so-called third class of simplest motions. We shall construct this solution 
using the system of equations of motion in the form (4.2). The system differs from one known 
earlier /7, 8/ not only in its derivation, but also in the form of the quadratures. If 0x = 

(n - SJ (K -I- Sl) = 0, then one of the factors must be constantly equal to zero. We can limit 
ourselves, without loss of generality, to considering only a single version yr- s1 = 0. 

Then the integral IS will yield 

(YE - Yz -I- U)" - 2 (vSS - UyS) = 'It (31, +lk) = I’ f- k 

Let us write 

21 = Yl - yz -t- U, $1. = -us, - vyz, a, = vsz - uy2 (5.1) 

We find that the above variables satisfy the closed system of equations 

2,' = @r, @; = --z,a,, a,' = 2,& (5.2) 

with the integrals 

e,' - 2% = 12 + k, a,* + fi,” = kas = l/,c,,s (5.3) 
System (5.1) is easily solved. The dependence of the variable sr on time can be found 

from the equation 

21 '2 = (co + P + k - zz) (Q -i- ci, - La - k) (5.4) 

If la + k < Co, then z1 = U CnT,, where 2; = jf/ U = I/~,~i-l~-i- k and the modulus of 
the elliptic function 
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Xl -= (co + 22 + k)l(Zc,) 

If l2 + k > cO, then z1 = p dn TV, where ~2' = l/#, and the modulus x2 = 2c,/(c,+ l2 + k). 

If l2 + k = co, then z1 = r'/ch z, z' = const = I/zO. 
Knowing z1 (t), we can find a, (t), fll (t) and we shall assume these functions to be known. 

But a knowledge of these three variables is insufficient to determine all six unknowns, and 
we must therefore determine another variable. The integral I, reduces, for y1 = sr, to the 

form 

Yr2 + (% + v)" - 2217, = B (5.5) 
B = ‘I, (I, + 2a, - k) = (co2 - 4k12)/(4k) 

Let us assume that 

%I = y1 + s,i (s2 + v) (n = 1, 2) (5.6) 

are the required variables. Then we can write the above relation in the form 

41% - 21 (~1 + qz) = B (5.7) 

Let us determine the time derivatives of q,,. Taking into account the equation of motion 

(4.2) , we obtain q1,2’ = -e,iy,uz,l. Multiplying these relations term by term and remembering 

that uluz = k, 2y, = q1 + qzr we arrive at the relation 4q,‘q,’ = k (ql + q#. Let us write the 

variables sought in terms of ql,qz,aI,fll,zl. If we put Y, = a, + e,ip,, then 

u1,2= 
k +I- 42.1) vn (e, - 3) 

k+%,l ’ yz + ~,isz = k + y,, 
(n=1,2) 

Substitutingthe expressions for ur, uz,yl into the equations q1,2’ = -eniyluz,l and taking 

into account the finite relation (5.7), we obtain two independent complex equations 

qn’=b,(qn2f B), an=+& 
n 

The real variable z2 = i (QiQz -t B)/(qr - q2) is governed, by virtue of (5.9), by the 

equation 
~2' = h, (z2" - B) (5.10) 

The form of the solution of this equation depends on the sign of the constant B: 

B = b2 > 0, z2 = b cth 8, 8' = -ba, (5.11) 

B = -bZ < 0, z2 = b ctg t&, 81' = -ba, 
B = 0, (Z2-‘)’ = --ho 

Knowing Z2, we can find qr,qz from the following finite equations: 

qlqz - z (nr + q2) = B, q1q2 + izz (al - 42) = --B (5.12) 

We note that from (5.8) and (5.7) there follows the equation z12 + B =ba, where 68 = 

(vl + k)(v, + k)k-‘> 0. ‘de shall write this relation connecting the variables Zll 6, in the 

parametric form 

B = bz > 0, z1 = b ctg 9, 6 = b cosec $ (5.13) 

B = -b2 < 0, z1 = b cthq,, 6 = b cosechq, 

Using relations (5.11) and (5.13), we can write qR in the form 

1) B=b*>O, qn = “@;“,;_‘-+;:,“,““’ , 8’ = - bh, 

2) B=-bz<O, q,,= 
b (sh*, +en isin&) 

ch+l -coos01 
( el*= - bh, 

3) B=O, (z;y= - a,,. 
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Solutions of the complete Navier-Stokes system are constructed in the form 
of special series for a viscous, heat conducting continuous compressible 
medium. The zeroth-order term of the series transmits some exact solution 
of the initial System (e.g. all parameters ofthemedium are constants). 
Further terms of the series are determined by recurrence methods in the 
course of solving the linearized Navier-Stokes system, homogeneous for 
the first term and inhomogeneous for all remaining terms. The represen- 
tations obtained are used to obtain approximate solutions of some boundary 
value problems. The process of stabilizing unidirectional flow between 
two fixed walls with constant heat flux specified on them is discussed, 
and an analogue of Poiseuille flow is constructed. 

We consider the system of Navier-Stokes equations /I/ 

-f$- + V.Vp+pdivV=D 

f+g+vp$) + Eu,cl~Vp + Eu,b,CT = 

~Z(divV)(FC’--~FIL)+“Bijj~u+O~Rr)+ 

(p’ + f p) V (div. V) + ~AV] 

PC, (-$- + V- VT) + Eu,B,b,T div V = 

& (xAT f Vx. VT) -f- -$ (p’ (div V)a + 

(I.11 


